A METHOD OF CONSTRUCTING A SOLUTION OF THE
HEAT-CONDUCTION EQUATION WITH COMPLEX
BOUNDARY CONDITIONS

B. F. Ryzhenko UDC 517.946:536.24

It*is proposed to solve the heat conduction equation with complicated boundary conditions
using the notion of R-functions, A solution which satisfies exactly mixed boundary condi-
tions or boundary conditions of the first, second, or third kind is constructed,

It is generally not possible to solve the problem concerning the temperature distribution in an arbi-
trary three-dimensional domain owing to the complex form of the boundaries of such a domain.

Difficulties encountered in solving such a problem, which depends on a complicated boundary of the
domain in question, may be circumvented by using the notion of R-functions [1, 2], which makes it possible
to construct functions connected in a natural way with the form of the boundary of the domain and the con~
ditions which must be satisfied on this boundary. The stationary temperature distribution in a domain
D=D+T+ Y may be obtained, as is well known, as a result of solving Poisson's equation
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with specified conditions on the unknown quantity ®(x, y, z) on the boundary of this domain I" + 7y .
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Let us assume that on T" + ¥ the temperature must satisfy the conditions
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on

0l,=1v.

P (2

Here A, @, ¢, ¥ are piecewise-continuous differentiable functions of the coordinates of points belonging to
the boundary.

The possibility always exists of decomposing the boundary I' of the domain D into several elements

r, T, ..., T, (F =UJ I‘i) , on each of which the function ¢ can be represented in the form of a single analy-
. i=1

tic expression. In this case the condition on the unknown function ® must be satisfied on each element I'j:
90
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Here, and henceforth, the subscript i indicates that the values of the corresponding functions are taken at

points belonging to the element I'y,

Let fi(x, y, 2) =0, f(x, y, 2) =0, ..., f,(x, ¥, z) = 0 be the equations, respectively, of the boundary
elements I'y, Ty, ..., Ty, of the domain being investigated. These equations may be formulated with the
use of R-functions [3]. Following [1], we construct the functions
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Since for {x, y, z) € I'{ only f; =0, then
A:)\,i, A=0Li, ‘D:(Pi on Fi

and, consequently, the boundary conditions (3) may be written in the form
[A(V"’ ,VG)—}—A@—(D] —0. (7)
vol

r
Here w(x, y, z) is a continuous function of real arguments, which has inside the domain D bounded
and continuous derivatives aw/ax, aw/ay, 9w/ 9z and which satisfies in the domain D the condition w{x, vy,
z) > 0 and on the boundary I' + ¥ of this domain the condition w(x, y, z) 0. The vector V! !lehas a
length equal to one, and for (x, y, z) €I + vy it coincides with the unit normal vector I' + .

Analogously, for the boundary y we have:
1. Equations of the elements of this boundary

iy =0 (=12 ...,n);

Y= U Yis

=1 (8
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4.Theboundary condition for the l_mknown quantity
©—v,=0. (9)

We seek a solution of the differential equation (1), satisfying the boundary conditions (7) and (9), in
the form

B, y, =0 (x, 4y, DF (%, 4, )+ 0,(x, y, 2 Fy(x, 4, 2) + Fy(x 9, 2), (10)

where Fy, F,, F3are continuous, twice-differentiable functions, and thefunctlons w, and w, satisfy the
conditions
oy (x1 Y, 2) lv = O’
o (%, ¥ Dley=0,
o, (%, 4, 2)>0, (% 4, 2) >0 in the domain D.

In particular, we can put

— w2 a2 2 —
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Substituting the expression (10) into Eq.(9), we find that this boundary condition for @ is satisfied if Fj
= ¥ Using the boundary condition (7), we obtain a relationship connecting the values of the functions Fy
and F2

= 0.
r

y]

From this it follows that the function

Q*A(T+Q1F1)—A(TV‘E'—» V(T+01F1))
= (¥ + oF) + 0, — - v
AL v,
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Fig.1. Region in which the tem-
perature field is to be deter-
mined.

]

satisfies the given boundary conditions (7) and (9) independently of the choice of the function Fy(x, y, z).
The function Fy(x, y, z) may be chosen arbitrarily to satisfy approximately the requirements of the solu~
tion constructed for Poisson's equation. Putting

N
Fl (x' Y Z) = z ngj(x’ Y, Z), (12)

i=0

where {g (x, y, z)} is a complete system of functions, we can determine the coefficients ¢ by one of the
var1at10na1 methods, for example, by using the functional [4]

1(8) = y [(v8) —26q] dQ. (13)
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Having done this, we will have solved the problem of determining the temperature distribution in a
region of three-dimensional space,

From Eq. (11) it follows that if on the boundary of the domain considered a boundary condition only of
the first kind is given, then the solution of the problem satisfying this condition is sought in the form

0=V +oF, (14)

In the case when the unknown quantity on the boundary of the domain satisfies a condition of the second or
third kind, we seek the solution satisfying this condition in the form
©— AF,— A (—‘?"’— , VFI)
lvol
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To illustrate the method we construct a function describing the temperature field in a two~dimen-
sional triangular domain (see Fig.1) on one of the boundaries of which the temperature distribution is given
and on the other two of which heat transfer takes place:

G)lv = (x),
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Using the R-conjunction (the ordinary one and its modification), we find, in accord with the theorems

given in [3], that —
R M e MR
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where XA,Y = (X + Y— VX% + Y%/2 is the R-conjunction and XA,Y = X~ VX> + Y? is the modified R-con-

(16)

=0. (17)

Ir,ur,

1436



junction. Then

A=k A=q D=0, ¥=yp@

and the solution of the given problem may be written in the form (wy = ¥, w, =w)

a(w+x2F)+?~(%;—l, v(w+x2F>) .
O = (P + ¥2F) — : - . 8)
W+ $*F)—o }v(vw)z

vl

The unknown function ¥ = F(x, y) may be approximated by the polynomial

N
F(x, y) = 2 ¢ Xy (19)
i4j=0
NOTATION
O, v, 2) is the temperature distribution function;
q{x, v, z) is the function of heat-source distribution in the space region under consideration;
A(A) is the thermal conductivity;
G (A) is the heat-transfer coefficient;
@(®) and P(¥) are the values of the unknown temperature at the boundary of the region;
w, Wy, Wy, 5, X1 arethe functions with constant sign in the region and turning to zero only at the bound-
ary or its separate sections; ‘
Y(Yl), I‘(I’i) are the sections of the boundary inthe region D under study.
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